

多通道电液伺服加载系统设计探讨

钟祥军

(中国航发湖南动力机械研究所,湖南 株洲 412000)

摘 要:为了在电液伺服加载系统基础上增加更多功能,拓展电液伺服加载系统在各个领域中的应用空间,本文以多通道电液伺服加载系统设计为重点。首先,针对多通道电液伺服加载系统的概念与功能进行概述;其次,表明多通道电液伺服加载系统软件与硬件的设计要点;最后,提出多通道电液伺服加载系统的控制要点,以期为相关人员或相关领域提供参考效果。

关键词:多通道;电液伺服;加载系统设计

中图分类号:TH137

文献标识码:A

文章编号:1004-7344(2021)08-0235-02

0 前言

电液伺服加载系统在很多行业之中都具备关键地位,比如在 航空航天、汽车制造以及工程结构等,此系统主要由数据收集装 置、系统控制装置、液压装置以及液压油源等多方面构成,属于 一套集机、电、液于一身的成套技术设施。而多通道电液伺服加 载系统可以在原有基础上,实现大位移、数字化以及多控制等功 能,这对于诸多领域都能起到更加有力的不同帮助和支持,因 此,以下着重分析多通道电液伺服加载系统的设计环节,具体 如下。

1 多通道电液伺服加载系统的综合概述

1.1 基本概念

在设计多通道电液伺服加载系统时,可以通过若干个作动装置进行多点试验,其中涵盖静态与动态两种试验形式。整个系统由多功能软件、中心泵、加力框架以及控制系统等多个部分构成,在铁路、建筑、航天以及汽车等领域开展测试工作时应用情况较为广泛¹¹。

1.2 自身功能

由于多通道电液伺服加载系统拥有诸多各不相同的理想功能,才被各行各业应用在生产、运营以及发展中,使各行各业达成最大化利益的发展目标。多通道电液伺服加载系统自身功能具体有以下几点:①主控系统可以与网络相互连接,相关人员可以现场针对系统展开手动操控,也可以在系统中对其展开远程操控;②系统可以直接显示载荷、位移、压力、温度、油位以及状态,相关人员可以直接观察实际状况,如果内部温度过高、油位较低或是状态异常,系统会立即为相关人员进行警报提示,如果出现载荷超限、位移超限、压力超限、温度与油位超限报警等问题,系统会自动停止试验程序运行或者关闭油源压力关闭继续运转,保护设备和试验件安全,降低实际影响与损害。2

2 多通道电液伺服加载系统的具体设计

多通道电液伺服加载系统之中含有诸多结构,如果想要保证设计全面性,必须将所有内容涵盖其中,因此,以下在对多通道电液伺服加载系统展开设计时,将所有结构分为软件与硬件,并着重针对软件结构与硬件结构展开设计,本次设计的详细内容具体如下。

2.1 软件设计要点

在本次多通道电液伺服加载系统软件设计之中,主要环节分为上位机软件与下位机软件两部分,设计要点具体如下。

2.1.1 上位机软件设计要点

为确保系统软件设计情况达到标准要求与水平,以 Windows 为基础,以 LabVIEW 为平台,其中 Windows 属于一种操作系统,整体界面较为简单,操作方式十分易懂,蕴含大量资源、数据以及软件,相关人员只需要将这些软件作为基础,便可从中开发更多先进软件,而且 Windows 对于系统硬件可以起到支持效果,为硬件提供更加良好的运转环境,增加多通道电液伺服加载系统软硬件的匹配程度,促使软硬件共同为系统提供相应保证。而 LabVIEW 属于程序开发环境,在计算机中其与正常语言存有较大差异,其他语言都会将文本为急产形成代码,但 LabVIEW 则是通过图形编辑对程序进行全面编写,在设计多通道电液伺服加载系统时,LabVIEW 属于整个软件设计中的要点之一。通过Windows 与 LabVIEW,便可为加载系统增添诸多全新功能,其主要的功能有:试验文件的建立与通道资源的配置、传感器分配与标定、安全保护值设定、试验载荷谱的编制、调试运行参数设置;试验数据存储与分析等等。

2.1.2 下位机软件设计要点

在设计下位机时,需要保证下位机操作方式足够间接,可以 在系统中实现实时控制,因此,本次设计选用 Disk Operating

System 为下位机设计平台,通过 BorlandC++展开编程操作,这样 加载系统就能在试验中应用时, 保证试验过程得到全方位的有 效协调。此外,在加载系统之中的下位机主要作用便是信息收集 与控制,需要通过上位机下达运行指令之后,才能根据指令内容 开展自身任务,所以最好将 PID 作为控制部分的核心,这样下位 机便可实时为上位机提供有效信息。在较复杂的多通道协调加 载试验系统中,使用 PID 控制方式还不能获得满意的试验效果 时,可以考虑增加载荷峰谷值补偿和幅值、相位补偿控制功能, 以便获得最佳的试验效果。

2.2 硬件设计要点

在本次多通道电液伺服加载系统硬件设计中,主要环节有 上位机、下位机、应变测试子系统以及控制装置,设计要点具体 如下。

2.2.1 上位机硬件设计要点

正常在加载系统之中的上位机,主要由多台计算机通过交换 机组成,实现同时进行多个试验的目的。上位机需要针对操作、 监控、试验谱、收集以及试验等诸多内容展开实时管理,因此,可 以将程控多功能函数发生装置与数字示波装置安设,添加到系 统硬件设计环节,这样程控多功能函数发生装置,便可根据试验 目标对波形的实际需求形成相应波形,例如正弦波、方波、三角 波、斜波、随机波等波形,并通过数字示波装置对所有波形信号 进行收集、显示以及储存。

2.2.2 下位机硬件设计要点

在多通道电液伺服加载系统中,下位机需要保证持续运转, 这样才能在第一时间接收上位机的指示内容,根据上位机指示 内容开展协调、加载以及控制,而且还需要实时针对电液伺服作 动装置载荷、位移等数据进行监测与收集,并将收集数据及时传 递给上位机。因此,可以选择 IPC 工业控制装置为下位机,这种 下位机具备定时装置、12位光隔离 A/D 板、32位数字输入与输 出板卡, 完全可以满足多通道电液伺服加载系统对下位机的硬 件需求。

2.2.3 应变测试子系统设计要点

为了从根本增加多通道电液伺服加载系统整体性能,笔者将 应变测试子系统运用到本次设计中,通过应变测试子系统可以 对试验信息展开动态收集与处理,还能替代载荷传感器对系统 进行控制。应变测试子系统主要结构为:调理板、接线板、下位机 A/D 转换渠道以及上位机和下位机的软件支持,其中接线板具备 适宜电阻,相关人员可以按照试验情况将接线板调成全桥与半 桥两种模式。在对试验件进行加载时,应变片能够将试验件的形 变转换为电信号, 应变测试系统中的信号调理单元对应变信号 进行处理,将其转送至多通道协调加载控制装置的转换渠道中, 还可以设置一定范围的应变值,若超出这个应变数值范围,系统 将会自动报警停止试验,相关技术人员可检查判断试验件是否 失效。

2.2.4 监测控制装置设计要点

在多通道电液伺服在家系统中监测控制属于主要部分,主要 作用为:针对油泵、液压系统、油温以及油箱的实际状态展开收 │ 科,研究方向为航空发动机强度试验。

集与控制,以免液压系统存有堵塞问题、油温出现过高问题,一 旦这些部位出现异常状况,监测控制装置会自动为相关人员发 出警报,并针对载荷状况与油压展开调理。因此,需要在监测控 制装置中安设功率输出端子板,通过端子板确定油泵启停状态, 并在液压系统中安设传感装置,通过传感装置确定具体状况,从 根本促使加载系统能够持续运行。

3 多通道电液伺服加载系统的控制要点

3.1 挑选电液伺服阀

一般在系统设计中对电液伺服的阀门部位进行挑选时,都会 按照系统额定压力与阀门空载流量进行确定, 但在实际挑选时 非常容易出现空载流量超过预计流量的状况,导致流量处于饱 和状态,促使系统无法正常保持稳定状态,因此,在挑选电液伺 服阀门时,为了保证系统适应性能更加理想,可以通过泄露补偿 根据阀门空载的实际流量为基础。一般对于载荷或者压力类型 的试验,可以选择压力型或者流量型的电液伺服阀,而且还需要 将类型转换与液压放大级数考虑其中。

3.2 挑选位移传感装置

为了在多通道电液伺服加载系统设计中达成大位移功能,需 要在其中安设位移传感装置。为了确保位移传感装置在实际应 用中的精准度,最好把系统以传感装置的精准度要求为基础,保 证位移传感装置精准度比基础要求更高, 促使系统位移数据得 到精准掌控,避免传感装置在运行过程中被各种因素造成破坏。 因此,最好选用磁致伸缩线性位移传感装置,这种传感装置内部 具备波导线,测杆材料为不锈钢,能够保证传感装置运行过程中 波导磁不会受到干扰与损坏4%。

4 结束语

综上所述, 软件与硬件在本次系统设计之中属于核心部分, 而且笔者特意在本次多通道电液伺服加载系统的设计环节加入 了应变测试系统,这样便可将系统收集而来的大量数据统一控 制,使收集和控制两部分在系统之中同时运行,在真正意义上 实现位移控制与通道控制。但为了保证系统最终的使用效果,以 上提出几点电液伺服加载系统的控制要点,在挑选相应装置时 最好根据以上要点进行确定,以免系统效果被不适装置干扰。

参考文献

- [1] 张建卓,张佳林,王洁,等.电液伺服静动复合加载系统设计及控制优 化[J].机械设计与研究,2019,181(3):181-185,191.
- [2] 郁文山,金志伟,刘龙兵,等.风洞主排气阀电液伺服系统仿真研究与 设计[J].机床与液压,2019,47(16):135-138.
- [3] 孙丁丁.基于电液伺服技术的智能装车控制系统设计研究[J].中国煤 炭,2019,45(2):77-80.
- [4] 申一歌,李名莉,胡雪梅.基于 DSP 的电液伺服实验台控制系统的研 究[J].计算机与数字工程,2020,48(1):63-66.

收稿日期:2021-01-05

作者简介:钟祥军(1975—),男,汉族,湖南株州人,工程师,本